Теория вероятности формулы и примеры решения задач. Классическое и статистическое определение вероятности


События, которые происходят реально или в нашем воображении, можно разделить на 3 группы. Это достоверные события, которые обязательно произойдут, невозможные события и случайные события. Теория вероятностей изучает случайные события, т.е. события, которые могут произойти или не произойти. В данной статье будет представлена в кратком виде теория вероятности формулы и примеры решения задач по теории вероятности, которые будут в 4 задании ЕГЭ по математике (профильный уровень).

Зачем нужна теория вероятности

Исторически потребность исследования этих проблем возникла в XVII веке в связи с развитием и профессионализацией азартных игр и появлением казино. Это было реальное явление, которое требовало своего изучения и исследования.

Игра в карты, кости, рулетку создавала ситуации, когда могло произойти любое из конечного числа равновозможных событий. Возникла необходимость дать числовые оценки возможности наступления того или иного события.

В XX веке выяснилось, что эта, казалось бы, легкомысленная наука играет важную роль в познании фундаментальных процессов, протекающих в микромире. Была создана современная теория вероятностей.

Основные понятия теории вероятности

Объектом изучения теории вероятностей являются события и их вероятности. Если событие является сложным, то его можно разбить на простые составляющие, вероятности которых найти несложно.

Суммой событий А и В называется событие С, заключающееся в том, что произошло либо событие А, либо событие В, либо события А и В одновременно.

Произведением событий А и В называется событие С, заключающееся в том, что произошло и событие А и событие В.

События А и В называется несовместными, если они не могут произойти одновременно.

Событие А называется невозможным, если оно не может произойти. Такое событие обозначается символом .

Событие А называется достоверным, если оно обязательно произойдет. Такое событие обозначается символом .

Пусть каждому событию А поставлено в соответствие число P{А). Это число P(А) называется вероятностью события А, если при таком соответствии выполнены следующие условия.

Важным частным случаем является ситуация, когда имеется равновероятных элементарных исходов, и произвольные из этих исходов образуют события А. В этом случае вероятность можно ввести по формуле . Вероятность, введенная таким образом, называется классической вероятностью. Можно доказать, что в этом случае свойства 1-4 выполнены.

Задачи по теории вероятностей, которые встречаются на ЕГЭ по математике, в основном связаны с классической вероятностью. Такие задачи могут быть очень простыми. Особенно простыми являются задачи по теории вероятностей в демонстрационных вариантах. Легко вычислить число благоприятных исходов , прямо в условии написано число всех исходов .

Ответ получаем по формуле .

Пример задачи из ЕГЭ по математике по определению вероятности

На столе лежат 20 пирожков — 5 с капустой, 7 с яблоками и 8 с рисом. Марина хочет взять пирожок. Какова вероятность, что она возьмет пирожок с рисом?

Решение.

Всего равновероятных элементарных исходов 20, то есть Марина может взять любой из 20 пирожков. Но нам нужно оценить вероятность того, что Марина возьмет пирожок с рисом, то есть , где А — это выбор пирожка с рисом. Значит у нас количество благоприятных исходов (выборов пирожков с рисом) всего 8. Тогда вероятность будет определяться по формуле:

Независимые, противоположные и произвольные события

Однако в открытом банке заданий стали встречаться и более сложные задания. Поэтому обратим внимание читателя и на другие вопросы, изучаемые в теории вероятностей.

События А и В называется независимыми, если вероятность каждого из них не зависит от того, произошло ли другое событие.

Событие B состоит в том, что событие А не произошло, т.е. событие B является противоположным к событию А. Вероятность противоположного события равна единице минус вероятность прямого события,т.е. .

Теоремы сложения и умножения вероятностей, формулы

Для произвольных событий А и В вероятность суммы этих событий равна сумме их вероятностей без вероятности их совместного события, т.е. .

Для независимых событий А и В вероятность произведения этих событий равна произведению их вероятностей, т.е. в этом случае .

Последние 2 утверждения называются теоремами сложения и умножения вероятностей.

Не всегда подсчет числа исходов является столь простым. В ряде случаев необходимо использовать формулы комбинаторики. При этом наиболее важным является подсчет числа событий, удовлетворяющих определенным условиям. Иногда такого рода подсчеты могут становиться самостоятельными заданиями.

Сколькими способами можно усадить 6 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Для третьего ученика остается 4 свободных места, для четвертого - 3, для пятого - 2, шестой займет единственное оставшееся место. Чтобы найти число всех вариантов, надо найти произведение , которое обозначается символом 6! и читается «шесть факториал».

В общем случае ответ на этот вопрос дает формула для числа перестановок из п элементов В нашем случае .

Рассмотрим теперь другой случай с нашими учениками. Сколькими способами можно усадить 2 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Чтобы найти число всех вариантов, надо найти произведение .

В общем случае ответ на этот вопрос дает формула для числа размещений из n элементов по k элементам

В нашем случае .

И последний случай из этой серии. Сколькими способами можно выбрать трех учеников из 6? Первого ученика можно выбрать 6 способами, второго - 5 способами, третьего - четырьмя. Но среди этих вариантов 6 раз встречается одна и та же тройка учеников. Чтобы найти число всех вариантов, надо вычислить величину: . В общем случае ответ на этот вопрос дает формула для числа сочетаний из элементов по элементам:

В нашем случае .

Примеры решения задач из ЕГЭ по математике на определение вероятности

Задача 1. Из сборника под ред. Ященко.

На тарелке 30 пирожков: 3 с мясом, 18 с капустой и 9 с вишней. Саша наугад выбирает один пирожок. Найдите вероятность того, что он окажется с вишней.

.

Ответ: 0,3.

Задача 2. Из сборника под ред. Ященко.

В каждой партии из 1000 лампочек в среднем 20 бракованных. Найдите вероятность того, что наугад взятая лампочка из партии будет исправной.

Решение: Количество исправных лампочек 1000-20=980. Тогда вероятность того, что взятая наугад лампочка из партии будет исправной:

Ответ: 0,98.

Вероятность того, что на тестировании по математике учащийся У. верно решит больше 9 задач, равна 0,67. Вероятность того, что У. верно решит больше 8 задач, равна 0,73. Найдите вероятность того, что У. верно решит ровно 9 задач.

Если мы вообразим числовую прямую и на ней отметим точки 8 и 9, то мы увидим, что условие «У. верно решит ровно 9 задач» входит в условие «У. верно решит больше 8 задач», но не относится к условию «У. верно решит больше 9 задач».

Однако, условие «У. верно решит больше 9 задач» содержится в условии «У. верно решит больше 8 задач». Таким образом, если мы обозначим события: «У. верно решит ровно 9 задач» — через А, «У. верно решит больше 8 задач» — через B, «У. верно решит больше 9 задач» через С. То решение будет выглядеть следующим образом:

Ответ: 0,06.

На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Тригонометрия», равна 0,2. Вероятность того, что это вопрос по теме «Внешние углы», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

Давайте подумаем какие у нас даны события. Нам даны два несовместных события. То есть либо вопрос будет относиться к теме «Тригонометрия», либо к теме «Внешние углы». По теореме вероятности вероятность несовместных событий равна сумме вероятностей каждого события, мы должны найти сумму вероятностей этих событий, то есть:

Ответ: 0,35.

Помещение освещается фонарём с тремя лампами. Вероятность перегорания одной лампы в течение года равна 0,29. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.

Рассмотрим возможные события. У нас есть три лампочки, каждая из которых может перегореть или не перегореть независимо от любой другой лампочки. Это независимые события.

Тогда укажем варианты таких событий. Примем обозначения: — лампочка горит, — лампочка перегорела. И сразу рядом подсчитаем вероятность события. Например, вероятность события, в котором произошли три независимых события «лампочка перегорела», «лампочка горит», «лампочка горит»: , где вероятность события «лампочка горит» подсчитывается как вероятность события, противоположного событию «лампочка не горит», а именно: .

Заметим, что благоприятных нам несовместных событий всего 7. Вероятность таких событий равна сумме вероятностей каждого из событий: .

Ответ: 0,975608.

Еще одну задачку вы можете посмотреть на рисунке:

Таким образом, мы с вами поняли, что такое теория вероятности формулы и примеры решения задач по которой вам могут встретиться в варианте ЕГЭ.

  • Вероя́тность - степень (относительная мера, количественная оценка) возможности наступления некоторого события. Когда основания для того, чтобы какое-нибудь возможное событие произошло в действительности, перевешивают противоположные основания, то это событие называют вероятным, в противном случае - маловероятным или невероятным. Перевес положительных оснований над отрицательными, и наоборот, может быть в различной степени, вследствие чего вероятность (и невероятность) бывает большей либо меньшей. Поэтому часто вероятность оценивается на качественном уровне, особенно в тех случаях, когда более или менее точная количественная оценка невозможна или крайне затруднительна. Возможны различные градации «уровней» вероятности.

    Исследование вероятности с математической точки зрения составляет особую дисциплину - теорию вероятностей. В теории вероятностей и математической статистике понятие вероятности формализуется как числовая характеристика события - вероятностная мера (или её значение) - мера на множестве событий (подмножеств множества элементарных событий), принимающая значения от

    {\displaystyle 0}

    {\displaystyle 1}

    Значение

    {\displaystyle 1}

    Соответствует достоверному событию. Невозможное событие имеет вероятность 0 (обратное вообще говоря не всегда верно). Если вероятность наступления события равна

    {\displaystyle p}

    То вероятность его ненаступления равна

    {\displaystyle 1-p}

    В частности, вероятность

    {\displaystyle 1/2}

    Означает равную вероятность наступления и ненаступления события.

    Классическое определение вероятности основано на понятии равновозможности исходов. В качестве вероятности выступает отношение количества исходов, благоприятствующих данному событию, к общему числу равновозможных исходов. Например, вероятность выпадения «орла» или «решки» при случайном подбрасывании монетки равна 1/2, если предполагается, что только эти две возможности имеют место и они являются равновозможными. Данное классическое «определение» вероятности можно обобщить на случай бесконечного количества возможных значений - например, если некоторое событие может произойти с равной вероятностью в любой точке (количество точек бесконечно) некоторой ограниченной области пространства (плоскости), то вероятность того, что оно произойдет в некоторой части этой допустимой области равна отношению объёма (площади) этой части к объёму (площади) области всех возможных точек.

    Эмпирическое «определение» вероятности связано с частотой наступления события исходя из того, что при достаточно большом числе испытаний частота должна стремиться к объективной степени возможности этого события. В современном изложении теории вероятностей вероятность определяется аксиоматически, как частный случай абстрактной теории меры множества. Тем не менее, связующим звеном между абстрактной мерой и вероятностью, выражающей степень возможности наступления события, является именно частота его наблюдения.

    Вероятностное описание тех или иных явлений получило широкое распространение в современной науке, в частности в эконометрике, статистической физике макроскопических (термодинамических) систем, где даже в случае классического детерминированного описания движения частиц детерминированное описание всей системы частиц не представляется практически возможным и целесообразным. В квантовой физике сами описываемые процессы имеют вероятностную природу.

ТЕМА 1 . Классическая формула вычисления вероятности.

Основные определения и формулы:

Эксперимент, исход которого невозможно предсказать, называют случайным экспериментом (СЭ).

Событие, которое в данном СЭ может произойти, а может и не произойти, называют случайным событием .

Элементарными исходами называют события, удовлетворяющие требованиям:

1.при всякой реализации СЭ происходит один и только один элементарный исход;

2.всякое событие есть некоторая комбинация, некоторый набор элементарных исходов.

Множество всех возможных элементарных исходов полностью описывает СЭ. Такое множество принято называть пространством элементарных исходов (ПЭИ). Выбор ПЭИ для описания данного СЭ неоднозначен и зависит от решаемой задачи.

Р(А) = n (A ) / n ,

где n – общее число равновозможных исходов,

n (A ) – число исходов, составляющих событие А, как говорят еще, благоприятствующих событию А.

Слова “наудачу”, “наугад”, “случайным образом” как раз и гарантируют равновозможность элементарных исходов.

Решение типовых примеров

Пример 1. Из урны, содержащей 5 красных, 3 черных и 2 белых шара, наудачу извлекают 3 шара. Найти вероятности событий:

А – “все извлеченные шары красные”;

В – “ все извлеченные шары – одного цвета”;

С – “среди извлеченных ровно 2 черных”.

Решение:

Элементарным исходом данного СЭ является тройка (неупорядоченная!) шаров. Поэтому, общее число исходов есть число сочетаний: n == 120 (10 = 5 + 3 + 2).

Событие А состоит только из тех троек, которые извлекались из пяти красных шаров, т.е. n (A )== 10.

Событию В кроме 10 красных троек благоприятствуют еще и черные тройки, число которых равно= 1. Поэтому: n (B )=10+1=11.

Событию С благоприятствуют те тройки шаров, которые содержат 2 черных и один не черный. Каждый способ выбора двух черных шаров может комбинироваться с выбором одного не черного (из семи). Поэтому: n (C ) = = 3 * 7 = 21.

Итак: Р(А) = 10/120; Р(В) = 11/120; Р(С) = 21/120.

Пример 2. В условиях предыдущей задачи будем считать, что шары каждого цвета имеют свою нумерацию, начиная с 1. Найти вероятности событий:

D – “максимальный извлеченный номер равен 4”;

Е – “ максимальный извлеченный номер равен 3”.

Решение:

Для вычисления n (D ) можно считать, что в урне есть один шар с номером 4, один шар с большим номером и 8 шаров (3к+3ч+2б) с меньшими номерами. Событию D благоприятствуют те тройки шаров, которые обязательно содержат шар с номером 4 и 2 шара с меньшими номерами. Поэтому: n (D ) =

P (D ) = 28/120.

Для вычисления n (Е) считаем: в урне два шара с номером 3, два с большими номерами и шесть шаров с меньшими номерами (2к+2ч+2б). Событие Е состоит из троек двух типов:

1.один шар с номером 3 и два с меньшими номерами;

2.два шара с номером 3 и один с меньшим номером.

Поэтому: n (E )=

Р(Е) = 36/120.

Пример 3. Каждая из М различных частиц бросается наудачу в одну из N ячеек. Найти вероятности событий:

А – все частицы попали во вторую ячейку;

В – все частицы попали в одну ячейку;

С – каждая ячейка содержит не более одной частицы (M £ N );

D – все ячейки заняты (M =N +1);

Е – вторая ячейка содержит ровно к частиц.

Решение:

Для каждой частицы имеется N способов попасть в ту или иную ячейку. По основному принципу комбинаторики для М частиц имеем N *N *N *…*N (М-раз). Итак, общее число исходов в данном СЭ n = N M .

Для каждой частицы имеем одну возможность попасть во вторую ячейку, поэтому n (A ) = 1*1*…*1= 1 М = 1, и Р(А) = 1/ N M .

Попасть в одну ячейку (всем частицам) означает попасть всем в первую, или всем во вторую, или и т.д. всем в N -ю. Но каждый из этих N вариантов может осуществиться одним способом. Поэтому n (B )=1+1+…+1(N -раз)=N и Р(В)=N /N M .

Событие С означает, что у каждой частицы число способов размещения на единицу меньше, чем у предыдущей частицы, а первая может попасть в любую из N ячеек. Поэтому:

n (C ) = N *(N -1)*…*(N +M -1) и Р(С) =

В частном случае при M =N : Р(С)=

Событие D означает, что одна из ячеек содержит две частицы, а каждая из (N -1) оставшихся ячеек содержит по одной частице. Чтобы найти n (D ) рассуждаем так: выберем ячейку в которой будет две частицы, это можно сделать =N способами; затем выберем две частицы для этой ячейки, для этого существует способов. После этого оставшиеся (N -1) частиц распределим по одной в оставшиеся (N -1) ячеек, для этого имеется (N -1)! способов.

Итак, n (D ) =

.

Число n (E ) можно подсчитать так: к частиц для второй ячейки можно способами, оставшиеся (М – К) частиц распределяются произвольным образом по (N -1) ячейке (N -1) М-К способами. Поэтому:

как онтологическая категория отражает меру возможности возникновения какого-либо сущего в каких-либо условиях. В отличие от математических и логической интерпретации этого понятия онтологическая В. не связывает себя с обязательностью количетвенного выражения. Значение В. раскрывается в контексте понимания детерминизма и характера развития в целом.

Отличное определение

Неполное определение ↓

ВЕРОЯТНОСТЬ

понятие, характеризующее количеств. меру возможности появления нек-рого события при определ. условиях. В науч. познании встречаются три интерпретации В. Классическая концепция В., возникшая из математич. анализа азартных игр и наиболее полно разработанная Б. Паскалем, Я. Бернулли и П. Лапласом, рассматривает В. как отношение числа благоприятствующих случаев к общему числу всех равновозможных. Напр., ири бросании игральной кости, имеющей 6 граней, выпадение каждой из них можно ожидать с В., равной 1/6, т. к. ни одна грань не имеет преимуществ перед другой. Подобная симметричность исходов опыта специально учитывается при организации игр, но сравнительно редко встречается при исследовании объективных событий в науке и практике. Классич. интерпретация В. уступила место статистич. концепции В., в основе к-рой лежат действит. наблюдения появления нек-рого события в ходе длит. опыта при точно фиксированных условиях. Практика подтверждает, что чем чаще происходит событие, тем больше степень объективной возможности его появления, или В. Поэтому статистич. интерпретация В. опирается на понятие относит. частоты, к-рое может быть определено опытным путем. В. как теоретич. понятие никогда не совпадает с эмпирически определяемой частотой, однако во мн. случаях она практически мало отличается от относит. частоты, найденной в результате длит. наблюдений. Многие статистики рассматривают В. как «двойник» относит. частоты, к-рая определяется при статистич. исследовании результатов наблюдений

или экспериментов. Менее реалистичным оказалось определение В. как предела относит. частот массовых событий, или коллективов, предложенное Р. Мизесом. В качестве дальнейшего развития частотного подхода к В. выдвигается диспозиционная, или пропенситивная, интерпретация В. (К. Поппер, Я. Хэккинг, М. Бунге, Т. Сетл). Согласно этой интерпретации, В. характеризует свойство порождающих условий, напр. эксперимент. установки, для получения последовательности массовых случайных событий. Именно такая установка порождает физич. диспозиции, или предрасположенности, В. к-рых может быть проверена с помощью относит. частот.

Статистич. интерпретация В. доминирует в науч. познании, ибо она отражает специфич. характер закономерностей, присущих массовым явлениям случайного характера. Во многих физич., биологич., экономич., демографич. и др. социальных процессах приходится учитывать действие множества случайных факторов, к-рые характеризуются устойчивой частотой. Выявление этой устойчивой частоты и количеств. ее оценка с помощью В. дает возможность вскрыть необходимость, к-рая прокладывает себе путь через совокупное действие множества случайностей. В этом находит свое проявление диалектика превращения случайности в необходимость (см. Ф. Энгельс, в кн.: Маркс К. и Энгельс Ф., Соч., т. 20, с. 535-36).

Логическая, или индуктивная, В. характеризует отношение между посылками и заключением недемонстративного и, в частности, индуктивного рассуждения. В отличие от дедукции, посылки индукции не гарантируют истинности заключения, а лишь делают его в той или иной степени правдоподобным. Это правдоподобие при точно сформулированных посылках иногда можно оценивать с помощью В. Значение этой В. чаще всего определяется посредством сравнит. понятий (больше, меньше или равно), а иногда и численным способом. Логич. интерпретацию часто используют для анализа индуктивных рассуждений и построения различных систем вероятностных логик (Р. Карнап, Р. Джефри). В семантич. концепции логич. В. часто определяется как степень подтверждения одного высказывания другими (напр., гипотезы ее эмпирич. данными) .

В связи с развитием теорий принятия решений и игр все большее распростраиение получает т. н. персоналистская интерпретация В. Хотя В. при этом выражает степень веры субъекта и появление нек-рого события, сами В. должны выбираться с таким расчетом, чтобы удовлетворялись аксиомы исчисления В. Поэтому В. при такой интерпретации выражает не столько степень субъективной, сколько разумной веры. Следовательно, решения, принимаемые на основе такой В., будут рациональными, ибо они не учитывают психологич. особенностей и склонностей субъекта.

С гносеологич. т. зр. различие между статистич., логич. и персоналистской интерпретациями В. состоит в том, что если первая дает характеристику объективным свойствам и отношениям массовых явлений случайного характера, то последние две анализируют особенности субъективной, познават. деятельности людей в условиях неопределенности.

ВЕРОЯТНОСТЬ

одно из важнейших понятий науки, характеризующее особое системное видение мира, его строения, эволюции и познания. Специфика вероятностного взгляда на мир раскрывается через включение в число базовых понятий бытия понятий случайности, независимости и иерархии (идеи уровней в структуре и детерминации систем).

Представления о вероятности зародились еще в древности и относились к характеристике нашего знания, при этом признавалось наличие вероятностного знания, отличающегося от достоверного знания и от ложного. Воздействие идеи вероятности на научное мышление, на развитие познания прямо связано с разработкой теории вероятностей как математической дисциплины. Зарождение математического учения о вероятности относится к 17 в., когда было положено начало разработке ядра понятий, допускающих. количественную (числовую) характеристику и выражающих вероятностную идею.

Интенсивные приложения вероятности к развитию познания приходятся на 2-ю пол. 19- 1-ю пол. 20 в. Вероятность вошла в структуры таких фундаментальных наук о природе, как классическая статистическая физика, генетика, квантовая теория, кибернетика (теория информации). Соответственно вероятность олицетворяет тот этап в развитии науки, который ныне определяется как неклассическая наука. Чтобы раскрыть новизну, особенности вероятностного образа мышления, необходимо исходить из анализа предмета теории вероятностей и оснований ее многочисленных приложений. Теорию вероятностей обычно определяют как математическую дисциплину, изучающую закономерности массовых случайных явлений при определенных условиях. Случайность означает, что в рамках массовости бытие каждого элементарного явления не зависит и не определяется бытием других явлений. В то же время сама массовость явлений обладает устойчивой структурой, содержит определенные регулярности. Массовое явление вполне строго делится на подсистемы, и относительное число элементарных явлений в каждой из подсистем (относительная частота) весьма устойчиво. Эта устойчивость сопоставляется с вероятностью. Массовое явление в целом характеризуется распределением вероятностей, т. е. заданием подсистем и соответствующих им вероятностей. Язык теории вероятностей есть язык вероятностных распределений. Соответственно теорию вероятностей и определяют как абстрактную науку об оперировании распределениями.

Вероятность породила в науке представления о статистических закономерностях и статистических системах. Последние суть системы, образованные из независимых или квазинезависимых сущностей, их структура характеризуется распределениями вероятностей. Но как возможно образование систем из независимых сущностей? Обычно предполагается, что для образования систем, имеющих целостные характеристики, необходимо, чтобы между их элементами существовали достаточно устойчивые связи, которые цементируют системы. Устойчивость статистическим системам придает наличие внешних условий, внешнего окружения, внешних, а не внутренних сил. Само определение вероятности всегда опирается на задание условий образования исходного массового явления. Еще одной важнейшей идеей, характеризующей вероятностную парадигму, является идея иерархии (субординации). Эта идея выражает взаимоотношения между характеристиками отдельных элементов и целостными характеристиками систем: последние как бы надстраиваются над первыми.

Значение вероятностных методов в познании заключается в том, что они позволяют исследовать и теоретически выражать закономерности строения и поведения объектов и систем, имеющих иерархическую, «двухуровневую» структуру.

Анализ природы вероятности опирается на частотную, статистическую ее трактовку. Вместе с тем весьма длительное время в науке господствовало такое понимание вероятности, которое получило название логической, или индуктивной, вероятности. Логическую вероятность интересуют вопросы обоснованности отдельного, индивидуального суждения в определенных условиях. Можно ли оценить степень подтверждения (достоверности, истинности) индуктивного заключения (гипотетического вывода) в количественной форме? В ходе становления теории вероятностей такие вопросы неоднократно обсуждались, и стали говорить о степенях подтверждения гипотетических заключений. Эта мера вероятности определяется имеющейся в распоряжении данного человека информацией, его опытом, воззрениями на мир и психологическим складом ума. Во всех подобных случаях величина вероятности не поддается строгим измерениям и практически лежит вне компетенции теории вероятностей как последовательной математической дисциплины.

Объективная, частотная трактовка вероятности утверждалась в науке со значительными трудностями. Первоначально на понимание природы вероятности оказали сильное воздействие те философско-методологические взгляды, которые были характерны для классической науки. Исторически становление вероятностных методов в физике происходило под определяющим воздействием идей механики: статистические системы трактовались просто как механические. Поскольку соответствующие задачи не решались строгими методами механики, то возникли утверждения, что обращение к вероятностным методам и статистическим закономерностям есть результат неполноты наших знаний. В истории развития классической статистической физики предпринимались многочисленные попытки обосновать ее на основе классической механики, однако все они потерпели неудачу. Основания вероятности состоят в том, что она выражает собою особенности структуры определенного класса систем, иного, чем системы механики: состояние элементов этих систем характеризуется неустойчивостью и особым (не сводящимся к механике) характером взаимодействий.

Вхождение вероятности в познание ведет к отрицанию концепции жесткого детерминизма, к отрицанию базовой модели бытия и познания, выработанных в процессе становления классической науки. Базовые модели, представленные статистическими теориями, носят иной, более общий характер: они включают в себя идеи случайности и независимости. Идея вероятности связана с раскрытием внутренней динамики объектов и систем, которая не может быть всецело определена внешними условиями и обстоятельствами.

Концепция вероятностного видения мира, опирающаяся на абсолютизацию представлений о независимости (как и прежде парадигма жесткой детерминации), в настоящее время выявила свою ограниченность, что наиболее сильно сказывается при переходе современной науки к аналитическим методам исследования сложноорганизованных систем и физико-математических основ явлений самоорганизации.

Отличное определение

Неполное определение ↓

Это отношение количества тех наблюдений, при которых рассматриваемое событие наступило, к общему количеству наблюдений. Такая трактовка допустима в случае достаточно большого количества наблюдений или опытов. Например, если среди встреченных на улице людей примерно половина - женщины, то можно говорить, что вероятность того, что встреченный на улице человек окажется женщиной, равна 1/2. Другими словами, оценкой вероятности события может служить частота его наступления в длительной серии независимых повторений случайного эксперимента .

Вероятность в математике

В современном математическом подходе классическая (то есть не квантовая) вероятность задаётся аксиоматикой Колмогорова . Вероятностью называется мера P , которая задаётся на множестве X , называемом вероятностным пространством . Эта мера должна обладать следующими свойствами:

Из указанных условий следует, что вероятностная мера P также обладает свойством аддитивности : если множества A 1 и A 2 не пересекаются, то . Для доказательства нужно положить все A 3 , A 4 , … равными пустому множеству и применить свойство счётной аддитивности.

Вероятностная мера может быть определена не для всех подмножеств множества X . Достаточно определить её на сигма-алгебре , состоящей из некоторых подмножеств множества X . При этом случайные события определяются как измеримые подмножества пространства X , то есть как элементы сигма-алгебры .

Вероятность смысле

Когда мы находим, что основания для того, чтобы какой-нибудь возможный факт произошел в действительности, перевешивают противоположные основания, мы считаем этот факт вероятным , в противном случае - невероятным . Этот перевес положительных оснований над отрицательными, и наоборот, может представлять неопределённое множество степеней, вследствие чего вероятность невероятность ) бывает большею или меньшею .

Сложные единичные факты не допускают точного вычисления степеней своей вероятности, но и здесь важно бывает установить некоторые крупные подразделения. Так, например, в области юридической , когда подлежащий суду личный факт устанавливается на основании свидетельских показаний, он всегда остаётся, строго говоря, лишь вероятным, и необходимо знать, насколько эта вероятность значительна; в римском праве здесь принималось четверное деление: probatio plena (где вероятность практически переходит в достоверность ), далее - probatio minus plena , затем - probatio semiplena major и, наконец, probatio semiplena minor .

Кроме вопроса о вероятности дела, может возникать, как в области права, так и в области нравственной (при известной этической точке зрения) вопрос о том, насколько вероятно, что данный частный факт составляет нарушение общего закона. Этот вопрос, служащий основным мотивом в религиозной юриспруденции Талмуда , вызвал и в римско-католическом нравственном богословии (особенно с конца XVI века) весьма сложные систематические построения и огромную литературу, догматическую и полемическую (см. Пробабилизм) .

Понятие вероятности допускает определенное численное выражение в применении лишь к таким фактам, которые входят в состав определенных однородных рядов. Так (в самом простом примере), когда кто-нибудь бросает сто раз кряду монету, мы находим здесь один общий или большой ряд (сумма всех падений монеты), слагающийся из двух частных или меньших, в данном случае численно равных, рядов (падения «орлом» и падения «решкой»); Вероятность, что в данный раз монета упадет решкой, то есть что этот новый член общего ряда будет принадлежать к этому из двух меньших рядов, равняется дроби, выражающей численное отношение между этим малым рядом и большим, именно 1/2, то есть одинаковая вероятность принадлежит к тому или другому из двух частных рядов. В менее простых примерах заключение не может быть выведено прямо из данных самой задачи, а требует предварительной индукции . Так, например, спрашивается: какая вероятность существует для данного новорожденного дожить до 80 лет? Здесь должно составить общий, или большой, ряд из известного числа людей, рожденных в подобных же условиях и умирающих в различном возрасте (это число должно быть достаточно велико, чтобы устранить случайные отклонения, и достаточно мало, чтобы сохранялась однородность ряда, ибо для человека, рождённого, например, в Санкт-Петербурге в обеспеченном культурном семействе, всё миллионное население города, значительная часть которого состоит из лиц разнообразных групп, могущих умереть раньше времени - солдат, журналистов, рабочих опасных профессий, - представляет группу слишком разнородную для настоящего определения вероятности); пусть этот общий ряд состоит из десяти тысяч человеческих жизней; в него входят меньшие ряды, представляющие число доживающих до того или другого возраста; один из этих меньших рядов представляет число доживающих до 80 лет. Но определить численность этого меньшего ряда (как и всех других) невозможно a priori ; это делается чисто индуктивным путем, посредством статистики . Положим, статистические исследования установили, что из 10000 петербуржцев среднего класса до 80 лет доживают только 45; таким образом, этот меньший ряд относится к большому, как 45 к 10000, и вероятность для данного лица принадлежать к этому меньшему ряду, то есть дожить до 80 лет, выражается дробью 0,0045. Исследование вероятности с математической точки зрения составляет особую дисциплину - теорию вероятностей .

См. также

Примечания

Литература

  • Альфред Реньи. Письма о вероятности / пер. с венг. Д.Сааса и А.Крамли под ред. Б. В. Гнеденко. М.: Мир. 1970
  • Гнеденко Б. В. Курс теории вероятностей. М., 2007. 42 с.
  • Купцов В. И. Детерминизм и вероятность. М., 1976. 256 с.

Wikimedia Foundation . 2010 .

Синонимы :

Антонимы :

Смотреть что такое "Вероятность" в других словарях:

    Общенаучная и филос. категория, обозначающая количественную степень возможности появления массовых случайных событий при фиксированных условиях наблюдения, характеризующую устойчивость их относительных частот. В логике семантическая степень… … Философская энциклопедия

    ВЕРОЯТНОСТЬ, число в интервале от нуля до единицы включительно, представляющее возможность свершения данного события. Вероятность события определяется как отношение числа шансов того, что событие может произойти, к общему количеству возможных… … Научно-технический энциклопедический словарь

    По всей вероятности.. Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские словари, 1999. вероятность возможность, вероятие, шанс, объективная возможность, маза, допустимость, риск. Ant. невозможность… … Словарь синонимов

    вероятность - Мера того, что событие может произойти. Примечание Математическое определение вероятности: «действительное число в интервале от 0 до 1, относящееся к случайному событию». Число может отражать относительную частоту в серии наблюдений… … Справочник технического переводчика

    Вероятность - «математическая, числовая характеристика степени возможности появления какого либо события в тех или иных определенных, могущих повторяться неограниченное число раз условиях». Если исходить из этого классического… … Экономико-математический словарь

    - (probability) Возможность наступления какого либо события или определенного результата. Может быть представлена в виде шкалы с делениями от 0 до 1. При нулевой вероятности события его наступление невозможно. При вероятности, равной 1, наступление … Словарь бизнес-терминов

Выбор редакции
Денежная единица РФ "...Статья 27. Официальной денежной единицей (валютой) Российской Федерации является рубль. Один рубль состоит из 100...

Техника "100 желаний" Научиться исполнять желания может каждый. Для этого нужно всего лишь договориться со своим подсознанием! А как это...

Получив атеистическое воспитание, я долгое время не испытывал интереса, а уж тем более священного трепета от религиозных святынь да...

Скакать во сне на белой лошади - прекрасный знак. В первую очередь он сулит Вам прочность дружеских связей и радость встреч с товарищами...
Заранее говорю, никогда не пробовала делать с другим сыром, только с твердыми сортами. В данном рецепте я использовала остатки трех...
Будьте чуткими к изменениям настроения любимых людей! Помните: мы получаем от мира ровно то, что ему даем. Хотите, чтобы окружающие...
Татуировка - практически такое же древнее явление, как и существование человечества. Тату были обнаружены даже на телах мумий, найденных...
Святой Спиридон Тримифунтский - очень почитаемый подвижник во всем христианском мире. К его мощам, на острове Корфу в Греции, постоянно...
Праздники, кто же их не любит? А что же легло в основу праздника День Народного Единства в России ? Праздник единства подчеркивает: какой...