Функция равномерного закона распределения имеет вид. Типовые непрерывные распределения случайных величин


Распределение вероятностей непрерывной случайной величины X , принимающей все значения из отрезка , называется равномерным , если её плотность вероятности на этом отрезке постоянна, а вне его равна нулю. Таким образом, плотность вероятности непрерывной случайной величины X , распределённой равномерно на отрезке , имеет вид:

Определим математическое ожидание , дисперсию и для случайной величины с равномерным распределением.

, , .

Пример. Все значения равномерно распределённой случайной величины лежат на отрезке . Найти вероятность попадания случайной величины в промежуток (3;5) .

a=2, b=8, .

Биномиальное распределение

Пусть производится n испытаний, причём вероятность появления события A в каждом испытании равна p и не зависит от исхода других испытаний (независимые испытания). Так как вероятность наступления события A в одном испытании равна p , то вероятность его ненаступления равна q=1-p .

Пусть событие A наступило в n испытаниях m раз. Это сложное событие можно записать в виде произведения:

.

Тогда вероятность того, что при n испытаниях событие A наступит m раз , вычисляется по формуле:

или (1)

Формула (1) называется формулой Бернулли .

Пусть X – случайная величина, равная числу появлений события A в n испытаниях, которая принимает значения с вероятностями:

Полученный закон распределения случайной величины называется законом биномиального распределения .

X m n
P

Математическое ожидание , дисперсия и среднее квадратическое отклонение случайных величин, распределённых по биномиальному закону, определяются по формулам:

, , .

Пример. По мишени производятся три выстрела, причём вероятность попадания при каждом выстреле равна 0,8. Рассматривается случайная величина X – число попаданий в мишень. Найти её закон распределения, математическое ожидание, дисперсию и среднее квадратическое отклонение.

p=0,8 , q=0,2 , n=3 , , , .

- вероятность 0 попаданий;



Вероятность одного попадания;

Вероятность двух попаданий;

- вероятность трёх попаданий.

Получаем закон распределения:

X
P 0,008 0,096 0,384 0,512

Задачи

1. Монету бросают 7 раз. Найти вероятность того, что 4 раза она упадёт гербом вверх.

2. Монету бросают 8 раз. Найти вероятность того, что герб выпадет не более трёх раз.

3. Вероятность попадания в цель при стрельбе из орудия p=0,6. Найти математическое ожидание общего числа попаданий, если будет произведено 10 выстрелов.

4. Найти математическое ожидание числа лотерейных билетов, на которые выпадут выигрыши, если приобретено 20 билетов, причём вероятность выигрыша по одному билету равна 0,3.

Равномерное распределение. Случайная величина X имеет смысл координаты точки, выбранной наудачу на отрезке

[а, Ь. Равномерную плотность распределения случайной величины X (рис. 10.5, а) можно определить как:

Рис. 10.5. Равномерное распределение случайной величины: а - плотность распределения; б - функция распределения

Функция распределения случайной величины X имеет вид:

График функции равномерного распределения показан на рис. 10.5, б.

Преобразование Лапласа равномерного распределения вычислим по (10.3):

Математическое ожидание и дисперсия легко вычисляются непосредственно из соответствующих определений:

Аналогичные формулы для математического ожидания и дисперсии можно также получить с использованием преобразования Лапласа по формулам (10.8), (10.9).

Рассмотрим пример системы сервиса, которую можно описать равномерным распределением.

Движение транспорта на перекрестке регулируется автоматическим светофором, в котором 1 мин горит зеленый свет и 0,5 мин - красный. Водители подъезжают к перекрестку в случайные моменты времени с равномерным распределением, не связанным с работой светофора. Найдем вероятность того, что автомобиль проедет перекресток, не останавливаясь.

Момент проезда автомобиля через перекресток распределен равномерно в интервале 1 + 0,5 = 1,5 мин. Автомобиль проедет через перекресток, не останавливаясь, если момент проезда перекрестка попадает в интервал времени . Для равномерно распределенной случайной величины в интервале вероятность попадания в интервал равна 1/1,5=2/3. Время ожидания Г ож есть смешанная случайная величина. С вероятностью 2/3 она равна нулю, а с вероятностью 0,5/1,5 принимает любое значение между 0 и 0,5 мин. Следовательно, среднее время и дисперсия ожидания у перекрестка

Экспоненциальное (показательное) распределение. Для экспоненциального распределения плотность распределения случайной величины можно записать как:

где А называют параметром распределения.

График плотности вероятности экспоненциального распределения дан на рис. 10.6, а.

Функция распределения случайной величины с экспоненциальным распределением имеет вид


Рис. 10.6. Экспоненциальное распределение случайной величины: а - плотность распределения; б - функция распределения

График функции экспоненциального распределения показан на рис. 10.6, 6.

Преобразование Лапласа экспоненциального распределения вычислим по (10.3):

Покажем, что для случайной величины X, имеющей экспоненциальное распределение, математическое ожидание равно среднеквадратическому отклонению а и обратно параметру А,:

Таким образом, для экспоненциального распределения имеем: Можно также показать, что

т.е. экспоненциальное распределение полностью характеризуется средним значением или параметром X .

Экспоненциальное распределение обладает рядом полезных свойств, которые используются при моделировании систем сервиса. Например, оно не имеет памяти. Когда , то

Другими словами, если случайная величина соответствует времени, то распределение оставшейся длительности не зависит от времени, которое уже прошло. Данное свойство иллюстрирует рис. 10.7.


Рис. 10.7.

Рассмотрим пример системы, параметры функционирования которой можно описать экспоненциальным распределением.

При работе некоторого прибора в случайные моменты времени возникают неисправности. Время работы прибора Т от его включения до возникновения неисправности распределено по экспоненциальному закону с параметром X. При обнаружении неисправности прибор сразу поступает в ремонт, который продолжается время / 0 . Найдем плотность и функцию распределения промежутка времени Г, между двумя соседними неисправностями, математическое ожидание и дисперсию, а также вероятность того, что время Т х будет больше 2t 0 .

Так как ,то


Нормальное распределение. Нормальным называют распределение вероятностей непрерывной случайной величины, которое описывается плотностью

Из (10.48) следует, что нормальное распределение определяется двумя параметрами - математическим ожиданием т и дисперсией а 2 . График плотности вероятности случайной величины с нормальным распределением при т= 0, а 2 =1 показан на рис. 10.8, а.


Рис. 10.8. Нормальный закон распределения случайной величины при т = 0, ст 2 = 1: а - плотность вероятности; 6 - функция распределения

Функция распределения описывается формулой

График функции распределения вероятности нормально распределенной случайной величины при т = 0, а 2 = 1 показан на рис. 10.8, б.

Определим вероятность того, что X примет значение, принадлежащее интервалу (а, р):

где - функция Лапласа, и вероятность того,

что абсолютное значение отклонения меньше положительного числа 6:

В частности, при т = 0 справедливо равенство:

Как видно, случайная величина с нормальным распределением может принимать как положительные значения, так и отрицательные. Поэтому для вычисления моментов необходимо использовать двустороннее преобразование Лапласа

Однако этот интеграл не обязательно существует. Если он существует, вместо (10.50) обычно используют выражение

которое называют характеристической функцией или производящей функцией моментов.

Вычислим по формуле (10.51) производящую функцию моментов нормального распределения:

После преобразования числителя подэкспоненциального выражения к виду получим

Интеграл

так как является интегралом нормальной плотности вероятности с параметрами т + so 2 и а 2 . Следовательно,

Дифференцируя (10.52), получим

Из данных выражений можно найти моменты:

Нормальное распределение широко распространено на практике, так как, согласно центральной предельной теореме, если случайная величина представляет собой сумму очень большого числа взаимно независимых случайных величин, влияние каждой из которых на всю сумму ничтожно мало, то имеет распределение, близкое к нормальному.

Рассмотрим пример системы, параметры которой можно описать нормальным распределением.

Предприятие изготовляет деталь заданного размера. Качество детали оценивается путем измерения ее размера. Случайные ошибки измерения подчинены нормальному закону со средним квадратическим отклонением а - Юмкм. Найдем вероятность того, что ошибка измерения не будет превышать 15 мкм.

По (10.49) находим

Для удобства использования рассмотренных распределений сведем полученные формулы в табл. 10.1 и 10.2.

Таблица 10.1. Основные характеристики непрерывных распределений

Таблица 10.2. Производящие функции непрерывных распределений

КОНТРОЛЬНЫЕ ВОПРОСЫ

  • 1. Какие распределения вероятностей относят к непрерывным?
  • 2. Что такое преобразование Лапласа-Стилтьеса? Для чего оно используется?
  • 3. Как вычислить моменты случайных величин с использованием преобразования Лапласа-Стилтьеса?
  • 4. Чему равно преобразование Лапласа суммы независимых случайных величин?
  • 5. Как вычислить среднее время и дисперсию времени перехода системы из одного состояния в другое с использованием сигнальных графов?
  • 6. Дайте основные характеристики равномерного распределения. Приведите примеры его использования в задачах сервиса.
  • 7. Дайте основные характеристики экспоненциального распределения. Приведите примеры его использования в задачах сервиса.
  • 8. Дайте основные характеристики нормального распределения. Приведите примеры его использования в задачах сервиса.

Рассмотрим равномерное непрерывное распределение. Вычислим математическое ожидание и дисперсию. Сгенерируем случайные значения с помощью функции MS EXCEL СЛЧИС() и надстройки Пакет Анализа, произведем оценку среднего значения и стандартного отклонения.

Равномерно распределенная на отрезке случайная величина имеет :

Сгенерируем массив из 50 чисел из диапазона }

Выбор редакции
Денежная единица РФ "...Статья 27. Официальной денежной единицей (валютой) Российской Федерации является рубль. Один рубль состоит из 100...

Техника "100 желаний" Научиться исполнять желания может каждый. Для этого нужно всего лишь договориться со своим подсознанием! А как это...

Получив атеистическое воспитание, я долгое время не испытывал интереса, а уж тем более священного трепета от религиозных святынь да...

Скакать во сне на белой лошади - прекрасный знак. В первую очередь он сулит Вам прочность дружеских связей и радость встреч с товарищами...
Заранее говорю, никогда не пробовала делать с другим сыром, только с твердыми сортами. В данном рецепте я использовала остатки трех...
Будьте чуткими к изменениям настроения любимых людей! Помните: мы получаем от мира ровно то, что ему даем. Хотите, чтобы окружающие...
Татуировка - практически такое же древнее явление, как и существование человечества. Тату были обнаружены даже на телах мумий, найденных...
Святой Спиридон Тримифунтский - очень почитаемый подвижник во всем христианском мире. К его мощам, на острове Корфу в Греции, постоянно...
Праздники, кто же их не любит? А что же легло в основу праздника День Народного Единства в России ? Праздник единства подчеркивает: какой...