Разбираемся с принципом работы генератора случайных чисел. Как работает генератор случайных чисел



Заметим, что в идеале кривая плотности распределения случайных чисел выглядела бы так, как показано на рис. 22.3 . То есть в идеальном случае в каждый интервал попадает одинаковое число точек: N i = N /k , где N — общее число точек, k — количество интервалов, i = 1, …, k .

Рис. 22.3. Частотная диаграмма выпадения случайных чисел,
порождаемых идеальным генератором теоретически

Следует помнить, что генерация произвольного случайного числа состоит из двух этапов:

  • генерация нормализованного случайного числа (то есть равномерно распределенного от 0 до 1);
  • преобразование нормализованных случайных чисел r i в случайные числа x i , которые распределены по необходимому пользователю (произвольному) закону распределения или в необходимом интервале.

Генераторы случайных чисел по способу получения чисел делятся на:

  • физические;
  • табличные;
  • алгоритмические.

Физические ГСЧ

Примером физических ГСЧ могут служить: монета («орел» — 1, «решка» — 0); игральные кости; поделенный на секторы с цифрами барабан со стрелкой; аппаратурный генератор шума (ГШ), в качестве которого используют шумящее тепловое устройство, например, транзистор (рис. 22.4–22.5 ).

Рис. 22.4. Схема аппаратного метода генерации случайных чисел
Рис. 22.5. Диаграмма получения случайных чисел аппаратным методом
Задача «Генерация случайных чисел при помощи монеты»

Сгенерируйте случайное трехразрядное число, распределенное по равномерному закону в интервале от 0 до 1, с помощью монеты. Точность — три знака после запятой.

Первый способ решения задачи
Подбросьте монету 9 раз, и если монета упала решкой, то запишите «0», если орлом, то «1». Итак, допустим, что в результате эксперимента получили случайную последовательность 100110100.

Начертите интервал от 0 до 1. Считывая числа в последовательности слева направо, разбивайте интервал пополам и выбирайте каждый раз одну из частей очередного интервала (если выпал 0, то левую, если выпала 1, то правую). Таким образом, можно добраться до любой точки интервала, сколь угодно точно.

Итак, 1 : интервал делится пополам — и , — выбирается правая половина, интервал сужается: . Следующее число, 0 : интервал делится пополам — и , — выбирается левая половина , интервал сужается: . Следующее число, 0 : интервал делится пополам — и , — выбирается левая половина , интервал сужается: . Следующее число, 1 : интервал делится пополам — и , — выбирается правая половина , интервал сужается: .

По условию точности задачи решение найдено: им является любое число из интервала , например, 0.625.

В принципе, если подходить строго, то деление интервалов нужно продолжить до тех пор, пока левая и правая границы найденного интервала не СОВПАДУТ между собой с точностью до третьего знака после запятой. То есть с позиций точности сгенерированное число уже не будет отличимо от любого числа из интервала, в котором оно находится.

Второй способ решения задачи
Разобьем полученную двоичную последовательность 100110100 на триады: 100, 110, 100. После перевода этих двоичных чисел в десятичные получаем: 4, 6, 4. Подставив спереди «0.», получим: 0.464. Таким методом могут получаться только числа от 0.000 до 0.777 (так как максимум, что можно «выжать» из трех двоичных разрядов — это 111 2 = 7 8) — то есть, по сути, эти числа представлены в восьмеричной системе счисления. Для перевода восьмеричного числа в десятичное представление выполним:
0.464 8 = 4 · 8 –1 + 6 · 8 –2 + 4 · 8 –3 = 0.6015625 10 = 0.602 10 .
Итак, искомое число равно: 0.602.

Табличные ГСЧ

Табличные ГСЧ в качестве источника случайных чисел используют специальным образом составленные таблицы, содержащие проверенные некоррелированные, то есть никак не зависящие друг от друга, цифры. В табл. 22.1 приведен небольшой фрагмент такой таблицы. Обходя таблицу слева направо сверху вниз, можно получать равномерно распределенные от 0 до 1 случайные числа с нужным числом знаков после запятой (в нашем примере мы используем для каждого числа по три знака). Так как цифры в таблице не зависят друг от друга, то таблицу можно обходить разными способами, например, сверху вниз, или справа налево, или, скажем, можно выбирать цифры, находящиеся на четных позициях.

Таблица 22.1.
Случайные цифры. Равномерно
распределенные от 0 до 1 случайные числа
Случайные цифры Равномерно распределенные
от 0 до 1 случайные числа
9 2 9 2 0 4 2 6 0.929
9 5 7 3 4 9 0 3 0.204
5 9 1 6 6 5 7 6 0.269
… …

Достоинство данного метода в том, что он дает действительно случайные числа, так как таблица содержит проверенные некоррелированные цифры. Недостатки метода: для хранения большого количества цифр требуется много памяти; большие трудности порождения и проверки такого рода таблиц, повторы при использовании таблицы уже не гарантируют случайности числовой последовательности, а значит, и надежности результата.

Находится таблица, содержащая 500 абсолютно случайных проверенных чисел (взято из книги И. Г. Венецкого, В. И. Венецкой «Основные математико-статистические понятия и формулы в экономическом анализе»).

Алгоритмические ГСЧ

Числа, генерируемые с помощью этих ГСЧ, всегда являются псевдослучайными (или квазислучайными), то есть каждое последующее сгенерированное число зависит от предыдущего:

r i + 1 = f (r i ) .

Последовательности, составленные из таких чисел, образуют петли, то есть обязательно существует цикл, повторяющийся бесконечное число раз. Повторяющиеся циклы называются периодами .

Достоинством данных ГСЧ является быстродействие; генераторы практически не требуют ресурсов памяти, компактны. Недостатки: числа нельзя в полной мере назвать случайными, поскольку между ними имеется зависимость, а также наличие периодов в последовательности квазислучайных чисел.

Рассмотрим несколько алгоритмических методов получения ГСЧ:

  • метод серединных квадратов;
  • метод серединных произведений;
  • метод перемешивания;
  • линейный конгруэнтный метод.

Метод серединных квадратов

Имеется некоторое четырехзначное число R 0 . Это число возводится в квадрат и заносится в R 1 . Далее из R 1 берется середина (четыре средних цифры) — новое случайное число — и записывается в R 0 . Затем процедура повторяется (см. рис. 22.6 ). Отметим, что на самом деле в качестве случайного числа необходимо брать не ghij , а 0.ghij — с приписанным слева нулем и десятичной точкой. Этот факт отражен как на рис. 22.6 , так и на последующих подобных рисунках.

Рис. 22.6. Схема метода серединных квадратов

Недостатки метода: 1) если на некоторой итерации число R 0 станет равным нулю, то генератор вырождается, поэтому важен правильный выбор начального значения R 0 ; 2) генератор будет повторять последовательность через M n шагов (в лучшем случае), где n — разрядность числа R 0 , M — основание системы счисления.

Для примера на рис. 22.6 : если число R 0 будет представлено в двоичной системе счисления, то последовательность псевдослучайных чисел повторится через 2 4 = 16 шагов. Заметим, что повторение последовательности может произойти и раньше, если начальное число будет выбрано неудачно.

Описанный выше способ был предложен Джоном фон Нейманом и относится к 1946 году. Поскольку этот способ оказался ненадежным, от него очень быстро отказались.

Метод серединных произведений

Число R 0 умножается на R 1 , из полученного результата R 2 извлекается середина R 2 * (это очередное случайное число) и умножается на R 1 . По этой схеме вычисляются все последующие случайные числа (см. рис. 22.7 ).

Рис. 22.7. Схема метода серединных произведений

Метод перемешивания

В методе перемешивания используются операции циклического сдвига содержимого ячейки влево и вправо. Идея метода состоит в следующем. Пусть в ячейке хранится начальное число R 0 . Циклически сдвигая содержимое ячейки влево на 1/4 длины ячейки, получаем новое число R 0 * . Точно так же, циклически сдвигая содержимое ячейки R 0 вправо на 1/4 длины ячейки, получаем второе число R 0 ** . Сумма чисел R 0 * и R 0 ** дает новое случайное число R 1 . Далее R 1 заносится в R 0 , и вся последовательность операций повторяется (см. рис. 22.8 ).


Рис. 22.8. Схема метода перемешивания

Обратите внимание, что число, полученное в результате суммирования R 0 * и R 0 ** , может не уместиться полностью в ячейке R 1 . В этом случае от полученного числа должны быть отброшены лишние разряды. Поясним это для рис. 22.8 , где все ячейки представлены восемью двоичными разрядами. Пусть R 0 * = 10010001 2 = 145 10 , R 0 ** = 10100001 2 = 161 10 , тогда R 0 * + R 0 ** = 100110010 2 = 306 10 . Как видим, число 306 занимает 9 разрядов (в двоичной системе счисления), а ячейка R 1 (как и R 0 ) может вместить в себя максимум 8 разрядов. Поэтому перед занесением значения в R 1 необходимо убрать один «лишний», крайний левый бит из числа 306, в результате чего в R 1 пойдет уже не 306, а 00110010 2 = 50 10 . Также заметим, что в таких языках, как Паскаль, «урезание» лишних битов при переполнении ячейки производится автоматически в соответствии с заданным типом переменной.

Линейный конгруэнтный метод

Линейный конгруэнтный метод является одной из простейших и наиболее употребительных в настоящее время процедур, имитирующих случайные числа. В этом методе используется операция mod(x , y ) , возвращающая остаток от деления первого аргумента на второй. Каждое последующее случайное число рассчитывается на основе предыдущего случайного числа по следующей формуле:

r i + 1 = mod(k · r i + b , M ) .

Последовательность случайных чисел, полученных с помощью данной формулы, называется линейной конгруэнтной последовательностью . Многие авторы называют линейную конгруэнтную последовательность при b = 0 мультипликативным конгруэнтным методом , а при b ≠ 0 — смешанным конгруэнтным методом .

Для качественного генератора требуется подобрать подходящие коэффициенты. Необходимо, чтобы число M было довольно большим, так как период не может иметь больше M элементов. С другой стороны, деление, использующееся в этом методе, является довольно медленной операцией, поэтому для двоичной вычислительной машины логичным будет выбор M = 2 N , поскольку в этом случае нахождение остатка от деления сводится внутри ЭВМ к двоичной логической операции «AND». Также широко распространен выбор наибольшего простого числа M , меньшего, чем 2 N : в специальной литературе доказывается, что в этом случае младшие разряды получаемого случайного числа r i + 1 ведут себя так же случайно, как и старшие, что положительно сказывается на всей последовательности случайных чисел в целом. В качестве примера можно привести одно из чисел Мерсенна , равное 2 31 – 1 , и таким образом, M = 2 31 – 1 .

Одним из требований к линейным конгруэнтным последовательностям является как можно большая длина периода. Длина периода зависит от значений M , k и b . Теорема, которую мы приведем ниже, позволяет определить, возможно ли достижение периода максимальной длины для конкретных значений M , k и b .

Теорема . Линейная конгруэнтная последовательность, определенная числами M , k , b и r 0 , имеет период длиной M тогда и только тогда, когда:

  • числа b и M взаимно простые;
  • k – 1 кратно p для каждого простого p , являющегося делителем M ;
  • k – 1 кратно 4, если M кратно 4.

Наконец, в заключение рассмотрим пару примеров использования линейного конгруэнтного метода для генерации случайных чисел.

Было установлено, что ряд псевдослучайных чисел, генерируемых на основе данных из примера 1, будет повторяться через каждые M /4 чисел. Число q задается произвольно перед началом вычислений, однако при этом следует иметь в виду, что ряд производит впечатление случайного при больших k (а значит, и q ). Результат можно несколько улучшить, если b нечетно и k = 1 + 4 · q — в этом случае ряд будет повторяться через каждые M чисел. После долгих поисков k исследователи остановились на значениях 69069 и 71365 .

Генератор случайных чисел, использующий данные из примера 2, будет выдавать случайные неповторяющиеся числа с периодом, равным 7 миллионам.

Мультипликативный метод генерации псевдослучайных чисел был предложен Д. Г. Лехмером (D. H. Lehmer) в 1949 году.

Проверка качества работы генератора

От качества работы ГСЧ зависит качество работы всей системы и точность результатов. Поэтому случайная последовательность, порождаемая ГСЧ, должна удовлетворять целому ряду критериев.

Осуществляемые проверки бывают двух типов:

  • проверки на равномерность распределения;
  • проверки на статистическую независимость.

Проверки на равномерность распределения

1) ГСЧ должен выдавать близкие к следующим значения статистических параметров, характерных для равномерного случайного закона:

2) Частотный тест

Частотный тест позволяет выяснить, сколько чисел попало в интервал (m r – σ r ; m r + σ r ) , то есть (0.5 – 0.2887; 0.5 + 0.2887) или, в конечном итоге, (0.2113; 0.7887) . Так как 0.7887 – 0.2113 = 0.5774 , заключаем, что в хорошем ГСЧ в этот интервал должно попадать около 57.7% из всех выпавших случайных чисел (см. рис. 22.9 ).

Рис. 22.9. Частотная диаграмма идеального ГСЧ
в случае проверки его на частотный тест

Также необходимо учитывать, что количество чисел, попавших в интервал (0; 0.5) , должно быть примерно равно количеству чисел, попавших в интервал (0.5; 1) .

3) Проверка по критерию «хи-квадрат»

Критерий «хи-квадрат» (χ 2 -критерий) — это один из самых известных статистических критериев; он является основным методом, используемым в сочетании с другими критериями. Критерий «хи-квадрат» был предложен в 1900 году Карлом Пирсоном. Его замечательная работа рассматривается как фундамент современной математической статистики.

Для нашего случая проверка по критерию «хи-квадрат» позволит узнать, насколько созданный нами реальный ГСЧ близок к эталону ГСЧ , то есть удовлетворяет ли он требованию равномерного распределения или нет.

Частотная диаграмма эталонного ГСЧ представлена на рис. 22.10 . Так как закон распределения эталонного ГСЧ равномерный, то (теоретическая) вероятность p i попадания чисел в i -ый интервал (всего этих интервалов k ) равна p i = 1/k . И, таким образом, в каждый из k интервалов попадет ровно по p i · N чисел (N — общее количество сгенерированных чисел).

Рис. 22.10. Частотная диаграмма эталонного ГСЧ

Реальный ГСЧ будет выдавать числа, распределенные (причем, не обязательно равномерно!) по k интервалам и в каждый интервал попадет по n i чисел (в сумме n 1 + n 2 + … + n k = N ). Как же нам определить, насколько испытываемый ГСЧ хорош и близок к эталонному? Вполне логично рассмотреть квадраты разностей между полученным количеством чисел n i и «эталонным» p i · N . Сложим их, и в результате получим:

χ 2 эксп. = (n 1 – p 1 · N ) 2 + (n 2 – p 2 · N ) 2 + … + (n k – p k · N ) 2 .

Из этой формулы следует, что чем меньше разность в каждом из слагаемых (а значит, и чем меньше значение χ 2 эксп. ), тем сильнее закон распределения случайных чисел, генерируемых реальным ГСЧ, тяготеет к равномерному.

В предыдущем выражении каждому из слагаемых приписывается одинаковый вес (равный 1), что на самом деле может не соответствовать действительности; поэтому для статистики «хи-квадрат» необходимо провести нормировку каждого i -го слагаемого, поделив его на p i · N :

Наконец, запишем полученное выражение более компактно и упростим его:

Мы получили значение критерия «хи-квадрат» для экспериментальных данных.

В табл. 22.2 приведены теоретические значения «хи-квадрат» (χ 2 теор. ), где ν = N – 1 — это число степеней свободы, p — это доверительная вероятность, задаваемая пользователем, который указывает, насколько ГСЧ должен удовлетворять требованиям равномерного распределения, или p — это вероятность того, что экспериментальное значение χ 2 эксп. будет меньше табулированного (теоретического) χ 2 теор. или равно ему .

Таблица 22.2.
Некоторые процентные точки χ 2 -распределения
p = 1% p = 5% p = 25% p = 50% p = 75% p = 95% p = 99%
ν = 1 0.00016 0.00393 0.1015 0.4549 1.323 3.841 6.635
ν = 2 0.02010 0.1026 0.5754 1.386 2.773 5.991 9.210
ν = 3 0.1148 0.3518 1.213 2.366 4.108 7.815 11.34
ν = 4 0.2971 0.7107 1.923 3.357 5.385 9.488 13.28
ν = 5 0.5543 1.1455 2.675 4.351 6.626 11.07 15.09
ν = 6 0.8721 1.635 3.455 5.348 7.841 12.59 16.81
ν = 7 1.239 2.167 4.255 6.346 9.037 14.07 18.48
ν = 8 1.646 2.733 5.071 7.344 10.22 15.51 20.09
ν = 9 2.088 3.325 5.899 8.343 11.39 16.92 21.67
ν = 10 2.558 3.940 6.737 9.342 12.55 18.31 23.21
ν = 11 3.053 4.575 7.584 10.34 13.70 19.68 24.72
ν = 12 3.571 5.226 8.438 11.34 14.85 21.03 26.22
ν = 15 5.229 7.261 11.04 14.34 18.25 25.00 30.58
ν = 20 8.260 10.85 15.45 19.34 23.83 31.41 37.57
ν = 30 14.95 18.49 24.48 29.34 34.80 43.77 50.89
ν = 50 29.71 34.76 42.94 49.33 56.33 67.50 76.15
ν > 30 ν + sqrt(2ν ) · x p + 2/3 · x 2 p – 2/3 + O (1/sqrt(ν ))
x p = –2.33 –1.64 –0.674 0.00 0.674 1.64 2.33

Приемлемым считают p от 10% до 90% .

Если χ 2 эксп. много больше χ 2 теор. (то есть p — велико), то генератор не удовлетворяет требованию равномерного распределения, так как наблюдаемые значения n i слишком далеко уходят от теоретических p i · N и не могут рассматриваться как случайные. Другими словами, устанавливается такой большой доверительный интервал, что ограничения на числа становятся очень нежесткими, требования к числам — слабыми. При этом будет наблюдаться очень большая абсолютная погрешность.

Еще Д. Кнут в своей книге «Искусство программирования» заметил, что иметь χ 2 эксп. маленьким тоже, в общем-то, нехорошо, хотя это и кажется, на первый взгляд, замечательно с точки зрения равномерности. Действительно, возьмите ряд чисел 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, … — они идеальны с точки зрения равномерности, и χ 2 эксп. будет практически нулевым, но вряд ли вы их признаете случайными.

Если χ 2 эксп. много меньше χ 2 теор. (то есть p — мало), то генератор не удовлетворяет требованию случайного равномерного распределения, так как наблюдаемые значения n i слишком близки к теоретическим p i · N и не могут рассматриваться как случайные.

А вот если χ 2 эксп. лежит в некотором диапазоне, между двумя значениями χ 2 теор. , которые соответствуют, например, p = 25% и p = 50%, то можно считать, что значения случайных чисел, порождаемые датчиком, вполне являются случайными.

При этом дополнительно надо иметь в виду, что все значения p i · N должны быть достаточно большими, например больше 5 (выяснено эмпирическим путем). Только тогда (при достаточно большой статистической выборке) условия проведения эксперимента можно считать удовлетворительными.

Итак, процедура проверки имеет следующий вид.

Проверки на статистическую независимость

1) Проверка на частоту появления цифры в последовательности

Рассмотрим пример. Случайное число 0.2463389991 состоит из цифр 2463389991, а число 0.5467766618 состоит из цифр 5467766618. Соединяя последовательности цифр, имеем: 24633899915467766618.

Понятно, что теоретическая вероятность p i выпадения i -ой цифры (от 0 до 9) равна 0.1.

2) Проверка появления серий из одинаковых цифр

Обозначим через n L число серий одинаковых подряд цифр длины L . Проверять надо все L от 1 до m , где m — это заданное пользователем число: максимально встречающееся число одинаковых цифр в серии.

В примере «24633899915467766618» обнаружены 2 серии длиной в 2 (33 и 77), то есть n 2 = 2 и 2 серии длиной в 3 (999 и 666), то есть n 3 = 2 .

Вероятность появления серии длиной в L равна: p L = 9 · 10 –L (теоретическая). То есть вероятность появления серии длиной в один символ равна: p 1 = 0.9 (теоретическая). Вероятность появления серии длиной в два символа равна: p 2 = 0.09 (теоретическая). Вероятность появления серии длиной в три символа равна: p 3 = 0.009 (теоретическая).

Например, вероятность появления серии длиной в один символ равна p L = 0.9 , так как всего может встретиться один символ из 10, а всего символов 9 (ноль не считается). А вероятность того, что подряд встретится два одинаковых символа «XX» равна 0.1 · 0.1 · 9, то есть вероятность 0.1 того, что в первой позиции появится символ «X», умножается на вероятность 0.1 того, что во второй позиции появится такой же символ «X» и умножается на количество таких комбинаций 9.

Частость появления серий подсчитывается по ранее разобранной нами формуле «хи-квадрат» с использованием значений p L .

Примечание: генератор может быть проверен многократно, однако проверки не обладают свойством полноты и не гарантируют, что генератор выдает случайные числа. Например, генератор, выдающий последовательность 12345678912345…, при проверках будет считаться идеальным, что, очевидно, не совсем так.

В заключение отметим, что третья глава книги Дональда Э. Кнута «Искусство программирования» (том 2) полностью посвящена изучению случайных чисел. В ней изучаются различные методы генерирования случайных чисел, статистические критерии случайности, а также преобразование равномерно распределенных случайных чисел в другие типы случайных величин. Изложению этого материала уделено более двухсот страниц.

На макроскопических случайных процессах с использованием таких простых предметов, как игральная кость, колесо рулетки или монетка, могут быть основаны генераторы случайных чисел . Теорией хаоса и теорией неустойчивых динамических систем можно объяснить наличие непредсказуемости в данных и даже макроскопические системы, полностью определенные уравнениями Ньютона, на практике часто имеют непредсказуемый выход, так как зависит он от микроскопических деталей начальных условий.

Кстати, на нашем сайте вы можете cгенерировать случайное число, воспользовавшись Генератором случайных чисел онлайн .

Что такое генератор случайных чисел и как он использует случайные физические процессы?

Скорость получения случайных чисел , достаточную для прикладных задач, не могут обеспечить устройства, которые основаны на макроскопических случайных процессах. Источник шума, из которого происходит извлечение случайных битов, поэтому лежит в основе современных АГСЧ. Источники шума бывают двух видов: те, которые имеют квантовую природу и квантовые явления не использующие.

Некоторые природные явления, такие как радиоактивный распад атомов - абсолютно случайны и в принципе не могут быть предсказаны (опыт Дэвиссона — Джермера можно считать одним из первых опытов, которые доказывают вероятностную природу некоторых явлений), этот факт является следствием законов квантовой физики. А из статистической механики следует, что каждая система в своих параметрах имеет случайные флуктуации , если температура - не равняется абсолютному нулю.

Сложный генератор случайных чисел.

Для АГСЧ "золотым стандартом" являются некоторые из квантово-механических процессов, поскольку они абсолютно случайны. Использующие в генераторах случайных чисел явления включают:

  • Дробовой шум - это тот шум, который в электрических цепях вызывается дискретностью носителей электрического заряда и этим термином также называется шум, вызванный в оптических приборах дискретностью переносчика света.
  • Спонтанное параметрическое рассеяние, использовано также может быть в генераторах случайных чисел .
  • Радиоактивный распад - имеет случайность каждого из отдельных актов распада, поэтому он используется в качестве источника шума. Разное количество частиц на различных промежутках времени, в результате попадает на приемник (это может быть счетчик Гейгера или же сцинтилляционный счетчик).

Детектировать гораздо проще неквантовые явления, но основанные на них генераторы случайных чисел , тогда будут иметь сильную зависимость от температуры (например, величина теплового шума будет пропорциональна температуре окружающей среды). Можно отметить такие процессы, среди использующихся в АГСЧ:

  • Тепловой шум в резисторе, после усиления из которого получается генератор случайных напряжений . На этом явлении в частности, был основан генератор чисел в компьютере Ferranti Mark 1.
  • Атмосферный шум, который измерен радиоприемником, также сюда можно отнести и прием прилетающих из космоса на Землю частиц, регистрирующихся приемником, а их количество будет случайно, в разные промежутки времени.
  • Разница в скорости хода часов - это явление, которое заключается в том, что абсолютно не будет совпадать ход разных часов.

Чтобы из физического случайного процесса получить последовательность случайных битов , то для этого существует несколько подходов. Заключается один из них в том, что усиливается полученный сигнал-шум, затем фильтруется и подается на вход быстродействующего компаратора напряжений, для получения логического сигнала. Будет случайной длительность состояний компаратора и это позволяет создавать последовательность случайных чисел , проводя измерения этих состояний.

Второй подход состоит в том, что подается случайный сигнал на вход аналого-цифрового преобразователя (могут применяться как специальные устройства, так и аудиовход компьютера), представлять собой последовательность из случайных чисел, в результате которой будет оцифрованный сигнал и при этом она может быть программно обработана.

Что такое генератор случайных чисел и какие другие явления он использует?

Использующие физические случайные процессы генераторы случайных чисел , дают возможность для получения хороших случайных чисел, но производство их дорого и относительно сложно (особенно это касается тех АГСЧ, которые основаны на радиоактивном распаде), однако существуют и другие более доступные источники случайности:

Простая генерация случайных чисел.

Работы цифровых видеокамер, которые используют съемку макроскопических явлений, следует отнести к наиболее необычным генераторам. Так например, для генерации случайных чисел , командой из Silicon Graphics была использована видеозапись лавовой лампы потому, что воск хаотически меняет свои формы в лампе. Ленты от вентилятора в потоке воздуха или пузыри в аквариуме, могут быть также использованы в качестве объекта для съемки.

Случалось ли вам когда-нибудь проверять утверждение, что из 10 запусков рулетки 5 раз выпадает чётное число? Или, быть может, вы участвовали несколько раз в розыгрышах лотерей и даже сумели выиграть? Если принять, что все результаты действительно случайны, то можно говорить о вероятности наступления того или иного события.

Перефразировав последнее утверждение, повторим слова людей, не один месяц участвующих в мероприятиях со случайным результатом: работает всемогущий рандом.

Так каким же образом проверить, является ли принцип распределения случайным? С этой задачей справится генератор случайных чисел. Главный его плюс в том, что он работает в режиме онлайн, а значит очень быстр и не зависит после загрузки от наличия интернет-соединения.

Как работает генератор случайных чисел

Для описания работы не потребуется много букв, всё очень просто: нужно выбрать минимальное и максимальное возможное число, ввести количество генерируемых значений, по необходимости отметить галочку «Исключить повторы», предотвращающую появление чисел, которые уже были, и нажать кнопку генерации. После этого, каждое очередное нажатие кнопки будет выдавать новые варианты распределения.

Для чего это может понадобиться? Например, для получения счастливых чисел в лотереи или рулетке. Помимо этого, генератор псевдослучайных чисел в состоянии эмулировать бочонки лото или подбрасывание монетки для конкурса - орёл и решка представляются нулём или единицей. Но основная примечательность в том, что после загрузки страницы вам не потребуется подключение к интернету - код написан на JavaScript и выполняется на стороне пользователя, в его браузере.

Тестирование работы данного онлайн генератора порой давало весьма интересные результаты: использование цифр 0 и 1, при 10 вариантах, не так уж редко выдавало распределение в соотношении 7 к 3, или даже 6 одинаковых цифр подряд.

Для чего ещё, кроме лото и примеров выше, может быть полезен рандом для распределения цифр? Хотя бы для игры в Угадайку. Наверняка в такую играли в детстве: ведущий загадывает число от 1 до 100, а другие пытаются его отгадать. Применительно к этому генератору, в роли ведущего выступаете вы, а компьютер пытается отгадать, что же загадано.

Можно даже играть в Морской бой, получив сразу группу чисел в диапазоне от 0 до 99. При этом, в качестве букв (которые указываются по горизонтали) используется старший разряд числа - 0…9 это а…и, цифры младшего разряда в таком случае заменяют диапазон 1…10, то есть просто добавляется единица. Возможно, сейчас данный подход кажется не очень наглядным, но это дело привычки.

Ещё один интересный способ использования - проверить свою интуицию. Вы пытаетесь предсказать, какие числа (по одному или группой) выдаст генератор, нажимаете кнопку и проверяете, насколько были близки к правильному результату. Кто знает, вдруг после нескольких попыток вы сможете безошибочно предугадывать итог?

Но следует учитывать, что генератор случ чисел так называется не зря. Существующие на сегодня методы не в состоянии обеспечивать действительно случайное значение - оно зависит от множества факторов, среди которых может быть предыдущее число, текущее время, содержимое той или иной ячейки памяти и прочие данные. Но для бытовых нужд их функционала, как правило, хватает на 100%.

Что же, надеюсь, что вы найдёте более обширное применение генератору, нежели описанные здесь варианты. А, быть может, даже сумеете предложить хорошую идею для расширения имеющегося функционала. В конце концов, именно самые невероятные мысли со временем превращались из расплывчатого замысла в реальное воплощение.

И т. д., и используется владельцами аккаунтов для привлечения новой аудитории в сообщество.

Результат таких розыгрышей часто зависит от удачи пользователя, так как получатель приза определяется случайным образом.

Для такого определения организаторы розыгрышей почти всегда используют генератор случайных чисел онлайн или предустановленный, распространяющийся бесплатно.

Выбор

Довольно часто выбрать такой генератор может быть сложно, так как их функционал достаточно различен – у некоторых он существенно ограничен, у других – довольно широк.

Реализуется достаточно большое количество таких сервисов, но сложность в том, что они отличаются по сфере действия.

Многие, например, привязаны своим функционалом к определенной социальной сети (например, многие приложения-генераторы во работают только со ссылками этой ).

Наиболее простые генераторы просто определяют случайно число в заданном диапазоне.

Это удобно потому, что не связывает результат с определенным постом, а значит, могут применяться при розыгрышах вне социальной сети и в различных иных ситуациях.

Иного применения у них, по сути, нет.

Совет! При выборе наиболее подходящего генератора важно учитывать то, для каких целей он будет использоваться.

Технические характеристики

Для наиболее быстрого процесса выбора оптимального онлайн-сервиса генерации случайных чисел в таблице, представленной ниже, приведены основные технические характеристики и функционал таких приложений.

Таблица 1. Особенности функционирования онлайн приложений для генерации случайного числа
Название Социальная сеть Несколько результатов Выбор из списка чисел Онлайн-виджет для сайта Выбор из диапазона Отключение повторений
RandStuff Да Да Нет Да Нет
Cast Lots Официальный сайт или ВКонтакте Нет Нет Да Да Да
Случайное число Официальный сайт Нет Нет Нет Да Да
Рандомус Официальный сайт Да Нет Нет Да Нет
Случайные числа Официальный сайт Да Нет Нет Нет Нет

Подробнее все приложения, рассмотренные в таблице, описаны ниже.

RandStuff

Воспользоваться данным приложением в режиме онлайн можно по ссылке на его официальный сайт http://randstuff.ru/number/ .

Это простой генератор случайных чисел, отличающийся быстрой и стабильной работой.

Он успешно реализуется как в формате отдельного самостоятельного приложения на официальном сайте, так и в виде приложения в .

Особенность данного сервиса в том, что он может выбрать случайное число как из указанного диапазона, так и из определенного списка чисел, которые можно указать на сайте.

  • Стабильная и быстрая работа;
  • Отсутствие непосредственной привязки к социальной сети;
  • Выбрать можно как одно, так и несколько чисел;
  • Можно выбрать только среди указанных чисел.

Отзывы пользователей о данном приложении таковы: «Определяем через этот сервис победителей в группах В Контакте. Спасибо», «Вы лучшие», «Пользуюсь только этим сервисом».

Cast Lots

Данное приложение представляет из себя простой функциональный генератор, реализующийся на официальном сайте, в виде приложения ВКонтакте.

Также существует виджет генератора для вставки на свой сайт.

Основным отличием от предыдущего описанного приложения является то, что это позволяет отключить повторение результата.

Случайные числа – это простой элемент криптографии, о котором меньше всего говорят, но он важен не менее, чем остальные. Почти всем системам компьютерной безопасности, в которых применяется криптография, необходимы случайные числа – для ключей, уникальных чисел в протоколах и т. п. – и безопасность таких систем часто зависит от произвольности ее случайных чисел. Если генератор случайных чисел ненадежен, вся система выходит из строя.

В зависимости от того, с кем вы разговариваете, генерация случайных чисел выглядит или тривиальной, или невозможной. Теоретически это невозможно. Джон фон Нейман, отец вычислительной техники, сказал: «Любой, кто считает, что существуют арифметические методы получения случайных цифр, безусловно, грешит». Он имел в виду, что невозможно получить что-то случайное в полном смысле слова на выходе такого детерминированного зверя, как компьютер. Это правда, но, к счастью, кое-что сделать мы можем. От генератора случайных чисел нам необходимо не то, чтобы числа были действительно случайными, а чтобы их невозможно было предсказать и воспроизвести. Если у нас будут выполнены эти два условия, мы сможем достичь безопасности.

С другой стороны, если мы нарушаем эти два условия, безопасности нет. В 1994 году в казино Монреаля установили компьютерный генератор случайных чисел для лотерей. Один наблюдательный игрок, проводивший в казино очень много времени, заметил, что выигрышные номера были каждый день одни и те же. Он успешно сорвал три Джек-Пота подряд и получил 600 000 долларов. (Как следует позаламывав руки, поскрежетав зубами и расследовав все, казино заплатило выигрыш.)

Существует несколько обширных классов генераторов случайных чисел. В основе некоторых из них лежат физические процессы, которые можно считать довольно случайными. Агентство национальной безопасности любит использовать в своей аппаратуре для создания случайных чисел электрические шумы диодов. Другие возможности – счетчик Гейгера или приемники радиопомех. Одна система в Интернете использует цифровой фотоаппарат, направленный на несколько стробоскопов. В других системах применяется турбулентность воздуха в дисководах или момент поступления сетевых пакетов.

Некоторые генераторы случайных чисел отслеживают случайные движения пользователя. Программа может попросить пользователя набрать на клавиатуре большую строку произвольных символов; она может задействовать последовательность символов или даже время между нажатиями клавиш для создания случайных чисел. Другая программа запросто способна потребовать у пользователя туда-сюда подвигать мышью или похрюкать в микрофон.

Некоторые генераторы случайных чисел применяют эту введенную информацию без изменений. В других она служит затравкой (начальным числом) для математических генераторов случайных чисел. Этот прием работает лучше, если системе требуется случайных чисел больше, чем их обеспечивает ввод информации.

Какого бы происхождения ни была случайность, генератор создаст ряд случайных битов. Затем их можно использовать как криптографические ключи и для всего остального, что нужно системе.

Выбор редакции
Денежная единица РФ "...Статья 27. Официальной денежной единицей (валютой) Российской Федерации является рубль. Один рубль состоит из 100...

Техника "100 желаний" Научиться исполнять желания может каждый. Для этого нужно всего лишь договориться со своим подсознанием! А как это...

Получив атеистическое воспитание, я долгое время не испытывал интереса, а уж тем более священного трепета от религиозных святынь да...

Скакать во сне на белой лошади - прекрасный знак. В первую очередь он сулит Вам прочность дружеских связей и радость встреч с товарищами...
Заранее говорю, никогда не пробовала делать с другим сыром, только с твердыми сортами. В данном рецепте я использовала остатки трех...
Будьте чуткими к изменениям настроения любимых людей! Помните: мы получаем от мира ровно то, что ему даем. Хотите, чтобы окружающие...
Татуировка - практически такое же древнее явление, как и существование человечества. Тату были обнаружены даже на телах мумий, найденных...
Святой Спиридон Тримифунтский - очень почитаемый подвижник во всем христианском мире. К его мощам, на острове Корфу в Греции, постоянно...
Праздники, кто же их не любит? А что же легло в основу праздника День Народного Единства в России ? Праздник единства подчеркивает: какой...